Selected Papers
Mann, K., Gallen, C.L., and Clandinin, T.R. (2017). Whole-Brain Calcium Imaging Reveals an Intrinsic Functional Network in Drosophila. Curr Biol. 27(15):2389-2396.e4.
Chamberland, S., Yang, H.H., Pan, M.M., Evans, S.W., Guan, S., Chavarha, M., Yang, Y., Salesse, C., Wu, H., Wu, J.C., Clandinin, T.R., Toth, K., Lin, M.Z., and St-Pierre, F. (2017). Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife. 6:e25690. doi: 10.7554/eLife.25690.
Katsov, A.Y., Freifeld, L., Horowitz, M., Kuehn, S., and Clandinin, T.R. (2017). Dynamic structure of locomotor behavior in walking fruit flies. Elife. 6:e26410.
Fisher, Y.E., Yang, H.H., Isaacman-Beck, J., Xie, M., Gohl, D.M., and Clandinin, T.R. (2017). FlpStop, a tool for conditional gene control in Drosophila. Elife. 6:e22279.
Leong, J.C., Esch, J.J., Poole, B., Ganguli, S., and Clandinin, T.R. (2016). Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression. J Neurosci. 36(31):8078-92.
Yang, H.H., St-Pierre, F., Sun, X., Ding, X., Lin, M.Z., and Clandinin, T.R. (2016). Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo. Cell. 166(1):245-57.
Fisher, Y.E., Leong, J.C., Sporar, K., Ketkar, M.D., Gohl, D.M., Clandinin, T.R., and Silies, M. (2015). A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection. Curr Biol. 25(24):3178-89.
Fisher, Y.E., Silies, M., and Clandinin, T.R. (2015). Orientation Selectivity Sharpens Motion Detection in Drosophila. Neuron. 88(2):390-402.
Behnia, R., Clark, D.A., Carter, A., Clandinin, T.R. and Desplan, C. (2014). Processing properties of ON and OFF pathways for Drosophila motion detection. Nature. 512:427-430.
Schwabe, T., Borycz, J.A., Meinertzhagen, I.A. and Clandinin, T.R. (2014). Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system. Current Biology. 24: 1304-1313.
Clark, D.A., Fitzgerald, J.E., Ales, J.M., Gohl, D.M., Silies, M.A., Norcia, A.M. and Clandinin, T.R. (2014). Flies and humans use a shared computational strategy that exploits natural scene statistics to estimate motion. Nature Neuroscience. 17:296-303.
Chamberland, S., Yang, H.H., Pan, M.M., Evans, S.W., Guan, S., Chavarha, M., Yang, Y., Salesse, C., Wu, H., Wu, J.C., Clandinin, T.R., Toth, K., Lin, M.Z., and St-Pierre, F. (2017). Fast two-photon imaging of subcellular voltage dynamics in neuronal tissue with genetically encoded indicators. Elife. 6:e25690. doi: 10.7554/eLife.25690.
Katsov, A.Y., Freifeld, L., Horowitz, M., Kuehn, S., and Clandinin, T.R. (2017). Dynamic structure of locomotor behavior in walking fruit flies. Elife. 6:e26410.
Fisher, Y.E., Yang, H.H., Isaacman-Beck, J., Xie, M., Gohl, D.M., and Clandinin, T.R. (2017). FlpStop, a tool for conditional gene control in Drosophila. Elife. 6:e22279.
Leong, J.C., Esch, J.J., Poole, B., Ganguli, S., and Clandinin, T.R. (2016). Direction Selectivity in Drosophila Emerges from Preferred-Direction Enhancement and Null-Direction Suppression. J Neurosci. 36(31):8078-92.
Yang, H.H., St-Pierre, F., Sun, X., Ding, X., Lin, M.Z., and Clandinin, T.R. (2016). Subcellular Imaging of Voltage and Calcium Signals Reveals Neural Processing In Vivo. Cell. 166(1):245-57.
Fisher, Y.E., Leong, J.C., Sporar, K., Ketkar, M.D., Gohl, D.M., Clandinin, T.R., and Silies, M. (2015). A Class of Visual Neurons with Wide-Field Properties Is Required for Local Motion Detection. Curr Biol. 25(24):3178-89.
Fisher, Y.E., Silies, M., and Clandinin, T.R. (2015). Orientation Selectivity Sharpens Motion Detection in Drosophila. Neuron. 88(2):390-402.
Behnia, R., Clark, D.A., Carter, A., Clandinin, T.R. and Desplan, C. (2014). Processing properties of ON and OFF pathways for Drosophila motion detection. Nature. 512:427-430.
Schwabe, T., Borycz, J.A., Meinertzhagen, I.A. and Clandinin, T.R. (2014). Differential adhesion determines the organization of synaptic fascicles in the Drosophila visual system. Current Biology. 24: 1304-1313.
Clark, D.A., Fitzgerald, J.E., Ales, J.M., Gohl, D.M., Silies, M.A., Norcia, A.M. and Clandinin, T.R. (2014). Flies and humans use a shared computational strategy that exploits natural scene statistics to estimate motion. Nature Neuroscience. 17:296-303.
Reviews
Friedrich-Reed Wienecke, C. and Clandinin, T.R. (2017). Drosophila Connectomics: Mapping the Larval Eye's Mind. Curr Biol. 27(21):R1161-R1163.
Isaacman-Beck, J. and Clandinin, T.R. (2017). Glia put visual map in sync. Science. 357(6354):867-868.
Mann, K. and Clandinin, T.R. (2017). How Does Familiarity Breed Contempt? Cell. 169(5):775-776.
Clandinin, T.R. and Marder, E. (2016). Editorial overview: Microcircuit evolution and computation. Curr Opin Neurobiol. 41:188-190.
Wang, I.E. and Clandinin, T.R. (2016). The Influence of Wiring Economy on Nervous System Evolution. Curr Biol. 26(20):R1101-R1108.
Clandinin, T.R. and Goodman, M.B. (2016). Grabbing brain activity on the go. Proc Natl Acad Sci U S A. 113(8):1965-7.
Clandinin, T.R. and Giocomo, L.M. (2015). Internal compass puts flies in their place. Nature. 521(7551):165-6.
Silies, M., Gohl, D.M., and Clandinin, T.R. (2014). Motion detecting circuits in flies: coming into view. Annual Rev Neurosci. 37:307-327.
Isaacman-Beck, J. and Clandinin, T.R. (2017). Glia put visual map in sync. Science. 357(6354):867-868.
Mann, K. and Clandinin, T.R. (2017). How Does Familiarity Breed Contempt? Cell. 169(5):775-776.
Clandinin, T.R. and Marder, E. (2016). Editorial overview: Microcircuit evolution and computation. Curr Opin Neurobiol. 41:188-190.
Wang, I.E. and Clandinin, T.R. (2016). The Influence of Wiring Economy on Nervous System Evolution. Curr Biol. 26(20):R1101-R1108.
Clandinin, T.R. and Goodman, M.B. (2016). Grabbing brain activity on the go. Proc Natl Acad Sci U S A. 113(8):1965-7.
Clandinin, T.R. and Giocomo, L.M. (2015). Internal compass puts flies in their place. Nature. 521(7551):165-6.
Silies, M., Gohl, D.M., and Clandinin, T.R. (2014). Motion detecting circuits in flies: coming into view. Annual Rev Neurosci. 37:307-327.